

Synthetic esters: combining food safety and high performance

21st NLGI India Chapter Annual Meeting 7th – 10th February, 2019

Ambika Satish – Siegfried Lucazeau

Agenda

- 1. The needs of food industry: a double challenge
- 2. Standards for food contact approval
- 3. Capabilities of synthetic esters
- 4. Conclusion

Lubrication in food industry

Food industry

- Meat processing
- Beverage production
- Bakeries
- Dairy production
- Cooked food
- ...

needs lubrication... as any other industry

A variety of equipment, that needs oils and greases

- Conveyor belts
- Chains
- Pumps
- Mixers, slicers, wrappers and packers
- Compressors
- Vacuum pumps
- Hydraulic systems

Double challenge: Performance

Some chains may operate in high temperature conditions (bakery ovens : up to 300°C)

Deep freezing conditions may be found (up to -50°C)

Presence of large amounts of steam, water and contaminants (dusts, sugars, chemicals...)

Double challenge: food safety

Manufacturing processes expose food products to equipment that requires proper lubrication

This exposure increases likelihood of food contamination due to lubricant leakage or contact

Unavoidable spills, over-lubrication, inappropriate lubricant application introduce amounts of lubricant in food

 \bigcirc

 \bigcirc

 \bigcirc

Product recalls

Liability Impact on company image Insurance costs

Standards for food contact approval

21st NLGI India Chapter Annual Meeting - 7th - 10th February, 2019

ISO 21469

• certification of manufacturing process of food grade lubricant (hygiene requirements)

HACCP (Hazard Analysis Critical Control Point)

- method for assessing, monitoring and controlling food contamination risk
- used in ISO 22000 (food safety management system)

In spite of risk management and good industrial practises, food contamination remains unavoidable:

- Over lubrication
- Inadequate lubricant application system
- Maintenance operations
- Leakage
- Mechanical failure
- Wrong equipment design...

 \checkmark Hence the need for safer components in lubricating oils and greases

Certification grades

H1	H2	H3
• Certification for approved lubricants for <u>incidental</u> food contact	• Certification for approved lubricants for food processing equipment, <u>without</u> food contact	 Certification for soluble oils (cleaners and anti-rust products, removed before equipment use)
3H	HT1	HT2
 Certification of edible oils to prevent adhesion (release agents) 	• Certification for heat transfer fluids approved for <u>incidental</u> food contact	 certification for heat transfer fluids <u>without</u> food contact

Mineral Oil Hydrocarbons

 Petroleum derived compounds may contain:

MOAH: aromatic compounds, suspected of carcinogenicity and genotoxicity

MOSH: saturated compounds, suspected of bioaccumulation and toxicity to liver

 Concern primarily for products intended for direct contact (wrapping)

✓ « As Low As Reasonably Achievable (ALARA) » precautionary principle may still be used on the market for H1 lubricants

NSF and InS services provide a list of HX-1 components for lubrication

✓ Base fluids:

White oils, PAO, Esters, PAG, Silicones, PIB, alkylated naphthalenes

✓ Thickeners for greases:

Calcium, Calcium complex, Calcium sulfonate, Aluminum complex, Silica, Clay, Polyurea, PTFE

Early H1 certified products suffered from a bad reputation with regards to their technical performance

The growing use of synthetic lubricants that combine performance and food safety, however, is changing the picture

	White oil	PAO	Synthetic Ester	PAG	Alklylated Naphthalene
KV40 mm²/s	30	31	28	26.2	36
KV100 mm²/s	-	8	5.7	5.2	5.6
VI	-	135	160	132	65
Pour Point °C	-6	-63	-38	-48	-33
Flash Point °C	200	245	265	242	236
Resistance to oxidation	0	+	+++	++	+
Friction modification	Ο	+	++	++	Ο
Volatility NOACK % mass	-	6.8	2.3	-	12

In low polarity base fluids (PAO), esters provide:

- ✓ Added solvency
- ✓ Seal swell compensation
- Added detergency and cleanliness
- Improved resistance to oxidation

High temperature H1 chain oil

PROPERTIES	UNIT	TYPICAL RESULT	TEST METHOD
Kinematic viscosity at 40°C	mm²/s	219	ISO 3104
Evaporation, 6 h – 200°C	% mass	0.4	ASTM D972
Steel corrosion	-	Pass	ISO 7120A
Copper corrosion	-	1b	ISO 2160
4 ball Wear Scar 1 h – 392 N	mm	0.42	ASTM D4172
Flash point COC	°C	296	ISO 2592

GFC Lu-27-A Coking Test	A-13, Micro- , 230-280°C
Deposit temperature	>280
Average merit	10
GFC Lu-27-A Coking Test	A-13, Micro- , 250-300°C
Deposit temperature	<250
Average merit	8,17

 Synthetic ester based high temperature chain oils deliver outstanding performance in volatility, longevity and cleanliness

High Temperature H1 chain oil

d 22

Clay grease based on high viscosity HX-1 ester

PROPERTIES	UNIT	RESULT	TEST METHOD
P60	1/10 mm	294	ASTM D217
Dropping Point	°C	>300	ASTM D566
Oil separation – 30 h, 200°C	% m	5.6	ASTM D6184
Evaporation – 22 h, 200°C	% m	2.1	ASTM D972

Conclusion

21st NLGI India Chapter Annual Meeting - 7th – 10th February, 2019

 Lubrication requirements and food contamination risk both must be dealt with in food industry

 Contamination risk management is composed of process management/good industrial practises AND use of safe lubricants

 Saturated, synthetic esters show a unique performance profile as base fluids or additives for H1 lubricants

 Combining food safety and lubrication performance: dual competence of esters for a double challenge

AVI-OIL INDUSTRY & AUTOMOTIVE

Thank you!