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Neopolyol esters

Thermo-oxidative stability
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Synthetic esters

High viscosity 
indices and good 

low temp 
properties, low 

volatility 

Anti-wear and 
friction modifying 

benefits

Excellent 
thermo-oxidative 

stability

Good solvency 
and detergency 

properties

Compatibility 
with mineral base 

fluids 

Non dangerous, 
biodegradable, 
can be made of 

renewable 
carbon
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Resistance to oxidation

Main oxidation initiation step:

• Esters show less C-H 
sites than hydrocrabons

• Some C-H sites are 
stabilised by ester 
function

RH + O2 R° + HOO°

protected against
O2 attack
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Cleanliness

• Esters tend to break down into light, volatile radicals
• Esters are mild detergents, they dissolve oxidation by-products

Clean degradation
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Neopolyol esters

Monoesters

Diesters

Trimellitate
esters

Neopentyl structure

Neopolyol ester
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Neopolyol esters

1. No β-elimination is possible:
thermal stability

2. Alcohol –CH2 are shielded by 
acid chains: oxidative stability

12
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Acid chain branching

• H from –CH3 are much more stable

3 H from –CH3 out of 17 6 H from –CH3 out of 17

• Branching increases the number of 
stable H sites, delivering improved 
resistance to oxidation

• Branching favors degradation into
volatile fractions
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Branched neopolyol esters

Property Unit PAO 4 MOE DIE NPE
linear
NPE

branched
NPE

Viscosity at 40C mm²/s 17.3 3.2 11.6 13.8 29.6 94.1

Δ KV 40C % 17.4 18.1 16.1 15 22 22.5

Δ Acid number mg KOH/g 7.7 16 7.8 1.7 1.3 0.4

Δ Weight
Steel
Silver
Aluminium
Magnesium
Copper

mg/cm²
0.28
0.24
0.33
-0.93
0.69

0.45
0.18
0.16
-4.5
0.76

0.06
0.03
0.01
0.01
0.17

0.0
-0.05
-0.01
-0.01
0.14

-0.03
-0.02
-0.01
-0.02
-0.02

-0.05
-0.06
-0.08
-0.06
0.06

Deposit mg/100 ml 438 1847 18 0.9 2.2 0.9
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Dedicated antioxidant system



12

The need for improved stability has led to the development of a high 
molecular weight oligomer AO showing

• reduced volatility
• improved thermal resistance
• improved stabilisation of free radicals

Goal is to achieve increased lubricant longevity, reduced evaporation, and 
improved resistance to deposit formation

The needs of the aviation industry

• Operating temperatures of jet engines 
have been increasing

• Oils are exposed to higher temperatures
and need to evacuate more heat

Slower AO depletion
Increased activity
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Jet engine oils
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Test methods, performance

ASTM D4636
Oxidation and corrosion

72h, 204C
Air flow : 5 l/h

SAE-ARP-5996
Hot Liquid Process

Simulator
375C

SPC HPC

ΔKV
%

15.7 12.3

ΔTAN
mg KOH/g

1.10 1.15

Sediment
mg/100 ml

1.2 0.07

SPC HPC

20 h (mg) 0.50 0.15

40 h (mg) - 0.35

High Performance Capability vs Standard Performance Capability:

SAE AS 5780 HPC requires improved jet engine oil performance on resistance to 
thermo-oxidation, coking propensity, and in high temperature bearing test

SPC products use classical AO
HPC products use oligomer AO
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Test methods, performance

FED-STD-791 - 3411
Thermal stability
and corrosivity

96 h, 274C

FED-STD-791 – 3410
High T°C bearing test

Bulk: 199C
Bearing: max 260C

10,000 rpm

SPC HPC

ΔKV
%

1.1 0.04

ΔTAN
mg KOH/g

2.6 0.35

Metal mass
mg/cm²

-0.2 0.02

SPC HPC

100 h
Bearing demerit

45 -

200 h
Bearing demerit

- 27
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Test methods, performance

Vapour Phase Coking test
260C – 48 h

Engine test
Aero-derivative turbine

SPC HPC SPC HPC

Oligomer AO technology must be used to comply with SAE-AS 5780 HPC
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Extension to industrial applications
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Extension to industrial applications

• Extreme industrial conditions:
turbines, furnace conveyors, 
turbochargers, foundry equipment, 
etc.

• Conveyor chains (construction 
materials: glass fibers, cement, 
laminated particle board and flooring, 
plastics, ceramics, stretch film), etc.

→ Temperatures exceeding 300C

• Using NPE and oligomer AO 
technology improves performance in 
such applications too
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Optimum technology

▪Combining branched neopolyol ester technology with
oligomer antioxidant system (and suitable metal deactivator
chemistry will maximize)

• Resistance to thermo-oxidation;

• Cleanliness;

• Lifetime.

▪

HT chain oil
classical AO system

HT chain oil
oligomer AO

KV40 – mm²/s 227 257

KV100 – mm²/s 19.6 20.9

COC - Celsius 317 314

Evaporation 6 h - 200°C - % 0.35 0.40
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Resistance to oxidation and lifetime

Fully formulated oil
Classical anti-oxidants

Fully formulated oil
Oligomer anti-oxidant

Thermogravimetric analysis - O2 – 250C

%

h
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Evaporation, residue formation
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Dish test – 200C

Dish test – 230C

Dry gum

Dry gum

Dry gum Dry gum

Fully formulated
Classical anti-oxidant

Fully formulated
Oligomer anti-oxidant

GFC Lu -27-A-13, Micro -Coking Test, 230 -280°C

Deposit temperature >280 >280

Average merit 10 10

GFC Lu -27-A-13, Micro -Coking Test, 250 -300°C

Deposit temperature < 250 266

Average merit 8.0 8.7

GFC Lu -27-A-13, Micro -Coking Test, 280 -330°C

Deposit temperature < 250 <280

Average merit 5.1 6.2
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Conclusion



23

Conclusion

• Specific antioxidant systems, deriving from oligomerized classical
antioxidants, have been developed for the needs of the aviation industry

• Such a technolgy delivers outstanding performance in neopolyol esters, 
and is extended to high temperature lubricants such as chain oils

• Lubricants using this technology deliver extended lifetime, low volatility, 
improved fire safety and deposit control in temperatures exceeding
300C.



THANK YOU




