

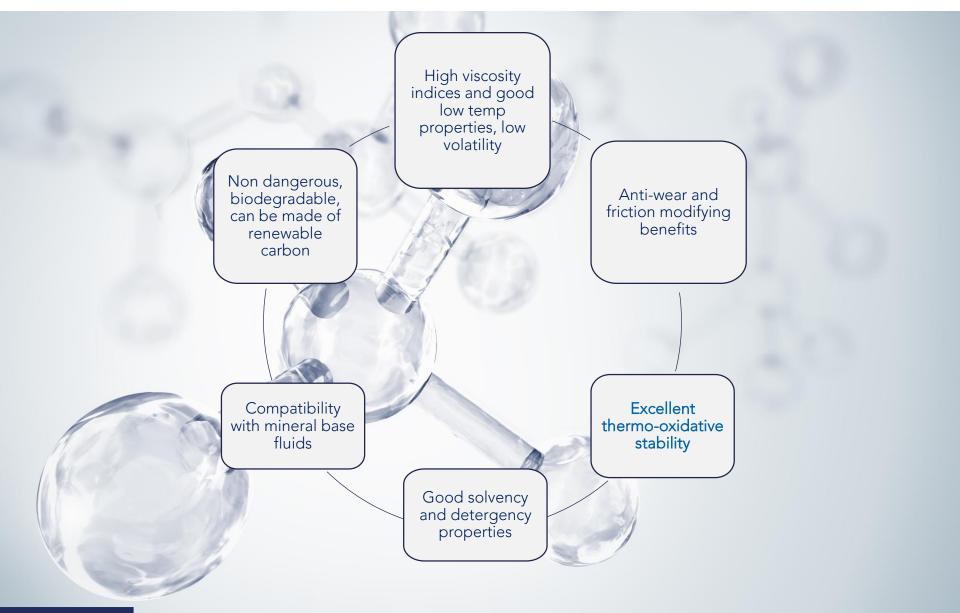
From jet engine oils to high temperature industrial lubricants

Siegfried Lucazeau

74th STLE Annual Meeting & Exhibition – Nashville, May 2019

AGENDA

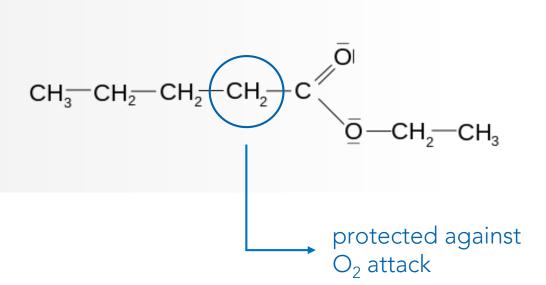
- 1. Neopolyol esters: thermo-oxidative stability
- 2. Dedicated antioxidant system
- 3. Application to jet engine oils
- 4. Extension to industrial lubricants
- 5. Conclusion


Neopolyol esters

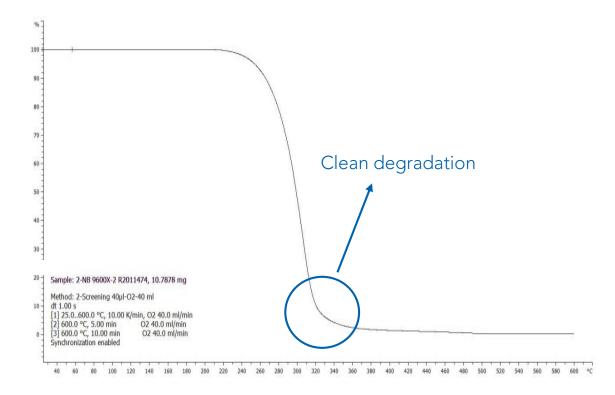
Thermo-oxidative stability

3

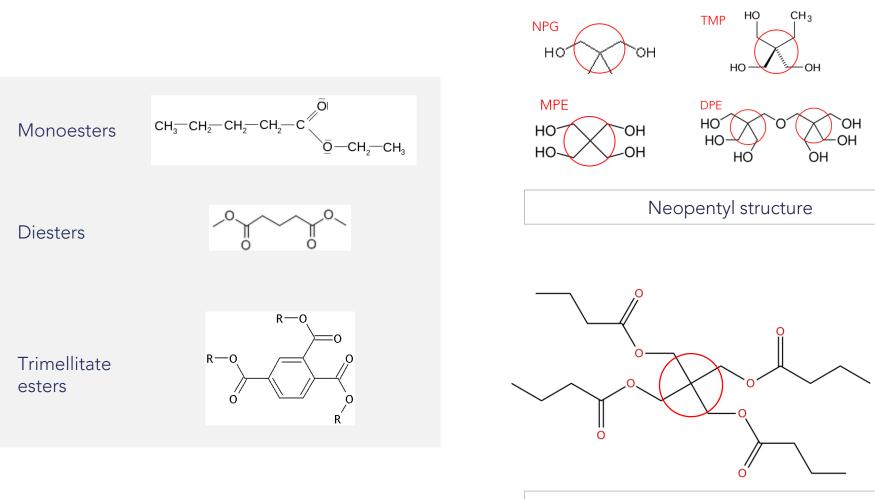
Synthetic esters



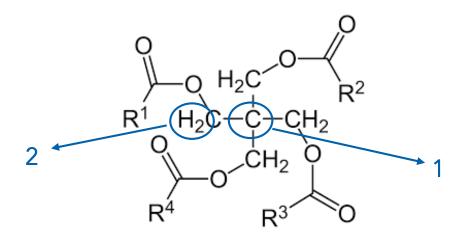
Main oxidation initiation step:

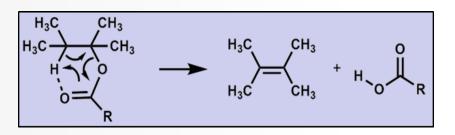

$$RH + O_2 \longrightarrow R^\circ + HOO^\circ$$

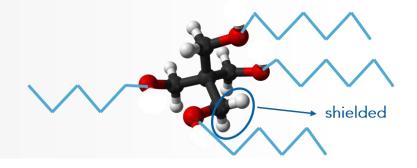
- Esters show less C-H sites than hydrocrabons
- Some C-H sites are stabilised by ester function



- Esters tend to break down into light, volatile radicals
- Esters are mild detergents, they dissolve oxidation by-products

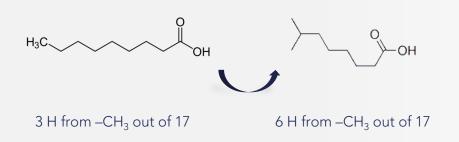



Neopolyol ester


Neopolyol esters

1. No β-elimination is possible: thermal stability

2. Alcohol $-CH_2$ are shielded by acid chains: oxidative stability



Acid chain branching

<u>Primary</u>	Secondary	<u>Tertiary</u>
98.0 kcal.	94.5 kcal	91.0 kcal
$R - CH_2 - H$	R ₂ CH – H	R ₃ C – H

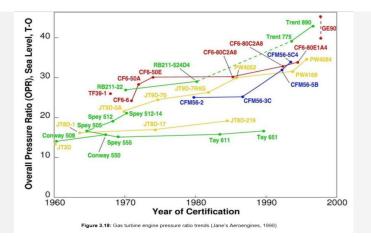
• H from –CH₃ are much more stable

 Branching increases the number of stable H sites, delivering improved resistance to oxidation

H₃C C H₃C H₃

• Branching favors degradation into volatile fractions

Branched neopolyol esters


Property	Unit	PAO 4	MOE	DIE	NPE	linear NPE	branched NPE
Viscosity at 40C	mm²/s	17.3	3.2	11.6	13.8	29.6	94.1
Δ KV 40C	%	17.4	18.1	16.1	15	22	22.5
∆ Acid number	mg KOH/g	7.7	16	7.8	1.7	1.3	0.4
∆ Weight Steel Silver Aluminium Magnesium Copper	mg/cm²	0.28 0.24 0.33 -0.93 0.69	0.45 0.18 0.16 -4.5 0.76	0.06 0.03 0.01 0.01 0.17	0.0 -0.05 -0.01 -0.01 0.14	-0.03 -0.02 -0.01 -0.02 -0.02	-0.05 -0.06 -0.08 -0.06 0.06
Deposit	mg/100 ml	438	1847	18	0.9	2.2	0.9

The needs of the aviation industry

- Operating temperatures of jet engines have been increasing
- Oils are exposed to higher temperatures and need to evacuate more heat

The need for improved stability has led to the development of a high molecular weight oligomer AO showing

- reduced volatility
- improved thermal resistance
- improved stabilisation of free radicals

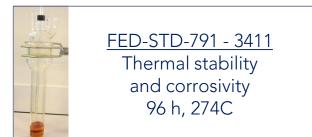
Slower AO depletion Increased activity

Goal is to achieve increased lubricant longevity, reduced evaporation, and improved resistance to deposit formation

Jet engine oils

High Performance Capability vs Standard Performance Capability:

SAE AS 5780 HPC requires improved jet engine oil performance on resistance to thermo-oxidation, coking propensity, and in high temperature bearing test


	SPC	HPC
ΔKV %	15.7	12.3
∆TAN mg KOH/g	1.10	1.15
Sediment mg/100 ml	1.2	0.07

	SPC	HPC
20 h (mg)	0.50	0.15
40 h (mg)	-	0.35

SPC products use classical AO HPC products use oligomer AO

Test methods, performance

<u>FED-STD-791 – 3410</u> High T°C bearing test Bulk: 199C Bearing: max 260C 10,000 rpm

	SPC	HPC
ΔKV %	1.1	0.04
∆TAN mg KOH/g	2.6	0.35
Metal mass mg/cm²	-0.2	0.02

	SPC	HPC
100 h Bearing demerit	45	-
200 h Bearing demerit	-	27

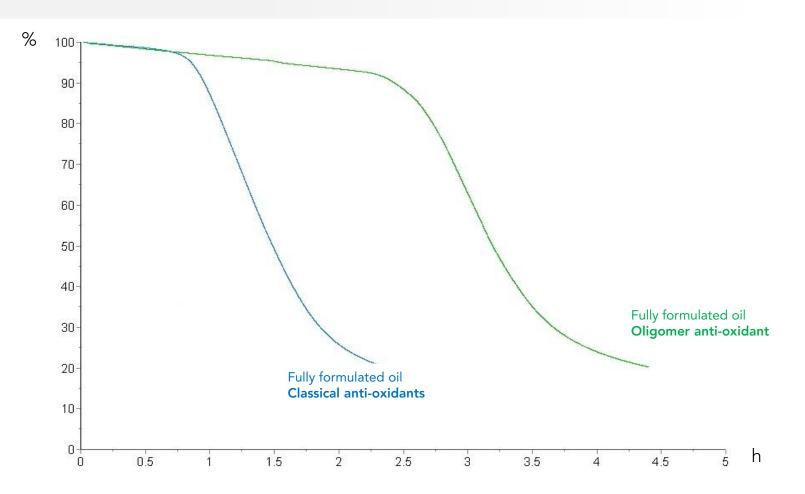
Test methods, performance

Vapour Phase Coking test 260C – 48 h		Engin Aero-deriva	e test tive turbine
SPC	HPC	SPC	HPC

Oligomer AO technology must be used to comply with SAE-AS 5780 HPC

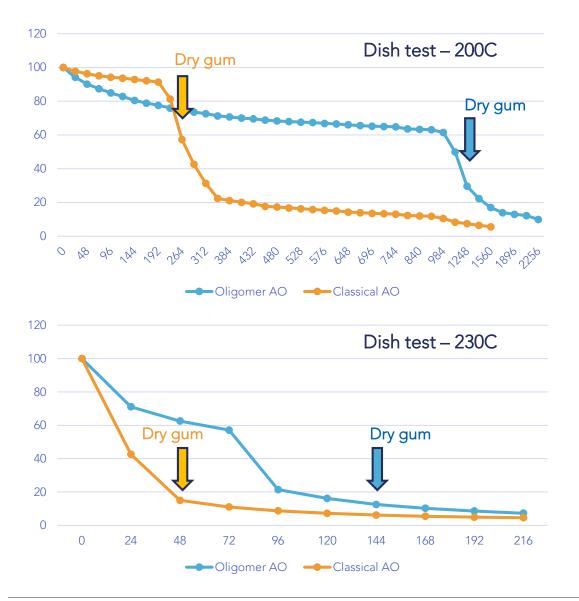
Extension to industrial applications

- Extreme industrial conditions: turbines, furnace conveyors, turbochargers, foundry equipment, etc.
- Conveyor chains (construction materials: glass fibers, cement, laminated particle board and flooring, plastics, ceramics, stretch film), etc.
- \rightarrow Temperatures exceeding 300C
- Using NPE and oligomer AO technology improves performance in such applications too


Combining branched neopolyol ester technology with oligomer antioxidant system (and suitable metal deactivator chemistry will maximize)

- Resistance to thermo-oxidation;
- Cleanliness;
- Lifetime.

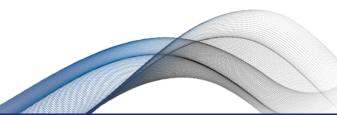
	HT chain oil classical AO system	HT chain oil oligomer AO
KV40 – mm²/s	227	257
KV100 – mm²/s	19.6	20.9
COC - Celsius	317	314
Evaporation 6 h - 200°C - %	0.35	0.40



Thermogravimetric analysis - $O_2 - 250C$

Evaporation, residue formation

	Fully formulated Classical anti-oxidant	Fully formulat e l Oligomer ant i oxidant		
GFC Lu -27-A-13, Micro -Coking Test, 230 -280°C				
Deposit temperature	>280	>280		
Average merit	10	10		
GFC Lu -27-A-13, Micro -Co Deposittemperature	< 250	266		
Average merit	8.0	8.7		
GFC Lu -27-A-13, Micro -Co	-			
Deposit temperature	< 250	<280		
Average merit	5.1	6.2		



Conclusion

- Specific antioxidant systems, deriving from oligomerized classical antioxidants, have been developed for the needs of the aviation industry
- Such a technolgy delivers outstanding performance in neopolyol esters, and is extended to high temperature lubricants such as chain oils
- Lubricants using this technology deliver extended lifetime, low volatility, improved fire safety and deposit control in temperatures exceeding 300C.

THANK YOU

